It is known that a (concept) lattice contains an n-dimensional Boolean suborder if and only if the context contains an n-dimensional contra-nominal scale as subcontext. In this work, we investigate more closely the interplay between the Boolean subcontexts of a given finite context and the Boolean suborders of its concept lattice. To this end, we define mappings from the set of subcontexts of a context to the set of suborders of its concept lattice and vice versa and study their structural properties. In addition, we introduce closed-subcontexts as an extension of closed relations to investigate the set of all sublattices of a given lattice.
翻译:已知( 概念) lattice 包含一个正维布尔语子顺序, 如果且只有在上下文包含一个正维反名比值作为子变量时, 我们才能使用该子序列。 在这项工作中, 我们更密切地调查特定有限背景的布尔语子文字与其概念 latice 的布尔语子文字之间的相互作用。 为此, 我们定义了从上下文的一组子文字到其概念拉蒂斯和反之的一组子序列的映射, 并研究其结构特性。 此外, 我们引入闭合子文字作为封闭关系的延伸, 以调查给定拉蒂斯的所有子直线的一组 。