In this work we initiate the study of the correspondence between $p$-adic statistical field theories (SFTs) and neural networks (NNs). In general quantum field theories over a $p$-adic spacetime can be formulated in a rigorous way. Nowadays these theories are considered just mathematical toy models for understanding the problems of the true theories. In this work we show these theories are deeply connected with the deep belief networks (DBNs). Hinton et al. constructed DBNs by stacking several restricted Boltzmann machines (RBMs). The purpose of this construction is to obtain a network with a hierarchical structure (a deep learning architecture). An RBM corresponds a certain spin glass, thus a DBN should correspond to an ultrametric (hierarchical) spin glass. A model of such system can be easily constructed by using $p$-adic numbers. In our approach, a $p$-adic SFT corresponds to a $p$-adic continuous DBN, and a discretization of this theory corresponds to a $p$-adic discrete DBN. We show that these last machines are universal approximators. In the $p$-adic framework, the correspondence between SFTs and NNs is not fully developed. We point out several open problems.
翻译:在这项工作中,我们开始研究美元-美元统计领域理论(SFTs)和神经网络(NNs)之间的对应关系。在一般情况下,可以严格地制定美元-美元空间时间的量子领域理论。现在,这些理论被视为仅仅是数学玩具模型,用来理解真实理论的问题。在这项工作中,我们展示这些理论与深层信仰网络(DBNs)有着深刻的联系。Hinton等人通过堆叠几台受限制的Boltzmann机器(RBMs)建造了DBNs。这一构建的目的是获得一个有等级结构(深层学习结构)的网络。成果管理制对应一个特定的旋转玻璃,因此DBN应该对应一个超度(等级)旋转玻璃。这种系统的模型可以很容易地用美元-美元数字构建。在我们的做法中,一个美元-acent SFT($-acFT)相当于1美元连续的美元,而这一理论的离散化相当于1美元-美元离散的DBND。我们显示这些最后一台机器是通用的顶点不是SFTER。