Timing-based side and covert channels in processor caches continue to be a threat to modern computers. This work shows for the first time a systematic, large-scale analysis of Arm devices and the detailed results of attacks the processors are vulnerable to. Compared to x86, Arm uses different architectures, microarchitectural implementations, cache replacement policies, etc., which affects how attacks can be launched, and how security testing for the vulnerabilities should be done. To evaluate security, this paper presents security benchmarks specifically developed for testing Arm processors and their caches. The benchmarks are themselves evaluated with sensitivity tests, which examine how sensitive the benchmarks are to having a correct configuration in the testing phase. Further, to evaluate a large number of devices, this work leverages a novel approach of using a cloud-based Arm device testbed for architectural and security research on timing channels and runs the benchmarks on 34 different physical devices. In parallel, there has been much interest in secure caches to defend the various attacks. Consequently, this paper also investigates secure cache architectures using the proposed benchmarks. Especially, this paper implements and evaluates the secure PL and RF caches, showing the security of PL and RF caches, but also uncovers new weaknesses.


翻译:在加工器储藏处中,基于时间的侧面和秘密渠道仍然是对现代计算机的威胁。这项工作首次显示对武器装置的系统、大规模分析以及这些处理器易受攻击的详细结果。与X86相比,武器使用不同的结构、微考古执行、缓存更换政策等,影响到如何发动攻击,以及如何对弱点进行安全测试。为了评估安全性,本文件介绍了专门为测试武器处理器及其储藏处而制定的安全性基准。对基准本身进行了敏感度测试,检查基准对测试阶段的正确配置有多敏感。此外,为了评估大量设备,这项工作采用了一种新颖的方法,即利用云基武器装置测试时间频道的建筑和安全性研究,对34个不同物理装置进行基准。与此同时,对于安全藏匿处保护各种攻击也非常感兴趣。因此,本文还利用拟议的基准对安全藏匿结构进行了调查。尤其是,本文件用纸牌仪器和评估了安全PL和RF的暗藏处的弱点,但也展示了新的安全隐蔽区。

0
下载
关闭预览

相关内容

安谋控股公司,又称ARM公司,跨国性半导体设计与软件公司,总部位于英国英格兰剑桥。主要的产品是ARM架构处理器的设计,将其以知识产权的形式向客户进行授权,同时也提供软件开发工具。 维基百科
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Top
微信扫码咨询专知VIP会员