The known a posteriori error analysis of hybrid high-order methods (HHO) treats the stabilization contribution as part of the error and as part of the error estimator for an efficient and reliable error control. This paper circumvents the stabilization contribution on simplicial meshes and arrives at a stabilization-free error analysis with an explicit residual-based a posteriori error estimator for adaptive mesh-refining as well as an equilibrium-based guaranteed upper error bound (GUB). Numerical evidence in a Poisson model problem supports that the GUB leads to realistic upper bounds for the displacement error in the piecewise energy norm. The adaptive mesh-refining algorithm associated to the explicit residual-based a posteriori error estimator recovers the optimal convergence rates in computational benchmarks.
翻译:已知的对混合高序方法的事后误差分析(HHO)将稳定贡献视为误差的一部分,并作为有效可靠误差控制误差估计值的一部分。 本文绕过安稳对简易胶片的误差贡献,到达一个稳定无误分析,以明确的剩余误差估计值为基础,对适应性网状精炼进行事后误差估计,以及均衡保证的上限误差约束(GUB)。 Poisson模型问题中的数值证据支持GUB导致在平面能源规范中为移位错误设定现实的上限。 与明确的剩余后端误差估计值相关的适应性网状精炼算法恢复了计算基准中的最佳趋同率。