We construct and analyze a message-passing algorithm for random constraint satisfaction problems (CSPs) at large clause density, generalizing work of El Alaoui, Montanari, and Sellke for Maximum Cut [arXiv:2111.06813] through a connection between random CSPs and mean-field Ising spin glasses. For CSPs with even predicates, the algorithm asymptotically solves a stochastic optimal control problem dual to an extended Parisi variational principle. This gives an optimal fraction of satisfied constraints among algorithms obstructed by the branching overlap gap property of Huang and Sellke [arXiv:2110.07847], notably including the Quantum Approximate Optimization Algorithm and all quantum circuits on a bounded-degree architecture of up to $\epsilon \cdot \log n$ depth.
翻译:暂无翻译