Language model alignment is a critical step in training modern generative language models. Alignment targets to improve win rate of a sample from the aligned model against the base model. Today, we are increasingly using inference-time algorithms (e.g., Best-of-N, controlled decoding, tree search) to decode from language models rather than standard sampling. We show that this train/test mismatch makes standard RLHF framework sub-optimal in view of such inference-time methods. To this end, we propose a framework for inference-aware alignment (InfAlign), which aims to optimize inference-time win rate of the aligned policy against the base model. We prove that for any inference-time decoding procedure, the optimal aligned policy is the solution to the standard RLHF problem with a transformation of the reward. This motivates us to provide the calibrate-and-transform RL (InfAlign-CTRL) algorithm to solve this problem, which involves a reward calibration step and a KL-regularized reward maximization step with a transformation of the calibrated reward. For best-of-N sampling and best-of-N jailbreaking, we propose specific transformations offering up to 3-8% improvement on inference-time win rates. Finally, we also show that our proposed reward calibration method is a strong baseline for optimizing standard win rate.
翻译:暂无翻译