Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000-2020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of -0.76 and -0.89 days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events.


翻译:湖冰冰是一个气候变化指标,就像海平面升高或冰川退缩一样。 监测冰河地震(LIP)是一个有用的指标,因为长期冻结和解冻模式是了解区域和全球气候变化的哨兵。 我们报告对瑞士奥贝伦加丁地区的研究,那里有几个中小山湖。 我们观察LIP事件,如在20年(2000-2020年)里从光学卫星图像中冷冻、断裂和冰覆盖时间间隔。 我们分析MODIS图像的时间序列,通过对Alpine湖进行有监督的机器学习,估算这些湖水冰的空间溶解图。为了对分类者进行培训,我们依靠根据网络摄像头图像人工提供附加说明的参考数据。我们从冰图中得出长期的LIP趋势。由于网络摄像数据仅提供两个冬天,我们对照运行的MODIS和VIIRS雪产品进行交叉核对。我们发现,完全的冻结期限为-0.76天和-089天,每年对Alpine湖湖湖湖冰冰的地图进行空间解解解的地图绘制地图。 我们观察了Sills和Silblanal的准确度与最新的温度变化,我们分别观察了与最近温度变化。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员