In this paper, we establish the global optimality and convergence rate of an off-policy actor critic algorithm in the tabular setting without using density ratio to correct the discrepancy between the state distribution of the behavior policy and that of the target policy. Our work goes beyond existing works on the optimality of policy gradient methods in that existing works use the exact policy gradient for updating the policy parameters while we use an approximate and stochastic update step. Our update step is not a gradient update because we do not use a density ratio to correct the state distribution, which aligns well with what practitioners do. Our update is approximate because we use a learned critic instead of the true value function. Our update is stochastic because at each step the update is done for only the current state action pair. Moreover, we remove several restrictive assumptions from existing works in our analysis. Central to our work is the finite sample analysis of a generic stochastic approximation algorithm with time-inhomogeneous update operators on time-inhomogeneous Markov chains, based on its uniform contraction properties.


翻译:在本文中,我们在表格设置中,在没有使用密度比率来纠正行为政策与目标政策之间国家分布差异的情况下,确定一个非政策性行为者批评算法的全球最佳性和趋同率。我们的工作超越了政策梯度方法最佳性的现有工作,因为现有工作使用精确的政策梯度来更新政策参数,而我们则使用一个近似和随机更新步骤。我们更新的步骤不是一个梯度更新,因为我们没有使用密度比率来纠正国家分布,这与从业者所做的完全吻合。我们更新是近似,因为我们使用了一个学习的批评家,而不是真正的价值函数。我们更新是随机的,因为每一步更新都是针对当前对州行动的。此外,我们删除了我们分析中现有工作中的若干限制性假设。我们工作的核心是对具有时间-不相容性马尔科夫链操作者基于其统一的收缩特性的具有时间-不相容性的最新操作者进行有限的抽样分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员