The stochastic partial differential equation approach to Gaussian processes (GPs) represents Mat\'ern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size $N$ by setting $n\approx N$ and exploiting sparsity. In this paper we reconsider the standard choice $n \approx N$ through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting $n \ll N$ in the large $N$ asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.


翻译:Gaussian 进程(GPs) 的局部偏差方程法代表了 Mat\'ern GP 的先期性,即以美元为单位的有限元素基函数和低精度矩阵的高西系数。这种表示方式通过设定 $\ aprox N$和开发聚度,提高了GP回归和大尺寸数据集分类的可缩放性,我们在此文件中通过分析估算性能重新考虑标准选择 $\ approx N$。我们的理论表明,根据某些平稳的假设,我们可以在不影响估算准确性的情况下降低计算和记忆成本,方法是将大值的N$-ll N$设定为大值。数字实验说明了我们理论的适用性,以及前期时间尺度对禁前制度的影响。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
81+阅读 · 2021年7月31日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关VIP内容
专知会员服务
81+阅读 · 2021年7月31日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员