The stochastic partial differential equation approach to Gaussian processes (GPs) represents Mat\'ern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size $N$ by setting $n\approx N$ and exploiting sparsity. In this paper we reconsider the standard choice $n \approx N$ through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting $n \ll N$ in the large $N$ asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.
翻译:Gaussian 进程(GPs) 的局部偏差方程法代表了 Mat\'ern GP 的先期性,即以美元为单位的有限元素基函数和低精度矩阵的高西系数。这种表示方式通过设定 $\ aprox N$和开发聚度,提高了GP回归和大尺寸数据集分类的可缩放性,我们在此文件中通过分析估算性能重新考虑标准选择 $\ approx N$。我们的理论表明,根据某些平稳的假设,我们可以在不影响估算准确性的情况下降低计算和记忆成本,方法是将大值的N$-ll N$设定为大值。数字实验说明了我们理论的适用性,以及前期时间尺度对禁前制度的影响。