In this work, we initiate the study of the Minimum Circuit Size Problem (MCSP) in the quantum setting. MCSP is a problem to compute the circuit complexity of Boolean functions. It is a fascinating problem in complexity theory---its hardness is mysterious, and a better understanding of its hardness can have surprising implications to many fields in computer science. We first define and investigate the basic complexity-theoretic properties of minimum quantum circuit size problems for three natural objects: Boolean functions, unitaries, and quantum states. We show that these problems are not trivially in NP but in QCMA (or have QCMA protocols). Next, we explore the relations between the three quantum MCSPs and their variants. We discover that some reductions that are not known for classical MCSP exist for quantum MCSPs for unitaries and states, e.g., search-to-decision reduction and self-reduction. Finally, we systematically generalize results known for classical MCSP to the quantum setting (including quantum cryptography, quantum learning theory, quantum circuit lower bounds, and quantum fine-grained complexity) and also find new connections to tomography and quantum gravity. Due to the fundamental differences between classical and quantum circuits, most of our results require extra care and reveal properties and phenomena unique to the quantum setting. Our findings could be of interest for future studies, and we post several open problems for further exploration along this direction.


翻译:在这项工作中,我们开始在量子设置中研究最低电路规模问题(MCSP) 。 MCSP是计算布林函数的电路复杂性的一个问题。 这是一个复杂的理论- 它的硬性是神秘的, 更好地了解其硬性会对计算机科学的许多领域产生惊人的影响。 我们首先定义和调查三个自然对象( 布林函数、 单位和量子状态) 最小量子电量规模问题的基本复杂性理论性。 我们显示,这些问题在NP 中并非微不足道,而是在QCMA( 或有QCMA协议) 中是一个问题。 接下来,我们探讨三个量子 MSP及其变体之间的关系。 我们发现, 经典的MSP对于计算机科学领域和状态的量子 MCSP 存在一些不为人所知的减少, 例如, 搜索到决定的减少和自我缩减。 最后, 我们系统化地将经典的量子电流电流电流电量规模的已知结果( 包括量解学、 量子学习理论、 量子流下线、 量子曲线下线条条、 精度精确度等三组的变的关系。 我们的量流和直判的量流和直判的后期研究, 需要、 的量子和后期的量流和后期研究, 和后期的量子学和后期研究, 和后期研究需要的特性的特性和后期研究, 和后期研究, 和后期研究, 和后期研究, 和后期研究, 需要、 和后期研究, 和后期研究, 和后期研究,需要找到我们量子流和后期的特性的特性的特性的特性, 和后期的研究和后期研究, 和后期研究, 和后期研究, 需要和后期研究, 和后期研究,需要和后期的特性和后期研究,需要和后期研究,需要和后期研究,需要和后期研究,需要和后期的研究和后期的研究和后期的研究和后期研究, 和后期研究, 和后期的研究和后期的研究和后期的研究和后期研究, 需要和后期研究,需要和后期研究,需要和后期的研究和后期的研究和后期的研究和后期

0
下载
关闭预览

相关内容

【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Quantum Technology for Economists
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月5日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员