The grid theorem, originally proved by Robertson and Seymour in Graph Minors V in 1986, is one of the most central results in the study of graph minors. It has found numerous applications in algorithmic graph structure theory, for instance in bidimensionality theory, and it is the basis for several other structure theorems developed in the graph minors project. In the mid-90s, Reed and Johnson, Robertson, Seymour and Thomas (see [Reed 97, Johnson, Robertson, Seymour, Thomas 01]), independently, conjectured an analogous theorem for directed graphs, i.e. the existence of a function f : N -> N such that every digraph of directed tree-width at least f(k) contains a directed grid of order k. In an unpublished manuscript from 2001, Johnson, Robertson, Seymour and Thomas give a proof of this conjecture for planar digraphs. But for over a decade, this was the most general case proved for the Reed, Johnson, Robertson, Seymour and Thomas conjecture. Only very recently, this result has been extended to all classes of digraphs excluding a fixed undirected graph as a minor (see [Kawarabayashi, Kreutzer 14]). In this paper, nearly two decades after the conjecture was made, we are finally able to confirm the Reed, Johnson, Robertson, Seymour and Thomas conjecture in full generality and to prove the directed grid theorem. As consequence of our results we are able to improve results in Reed et al. in 1996 [Reed, Robertson, Seymour, Thomas 96] (see also [Open Problem Garden]) on disjoint cycles of length at least l and in [Kawarabayashi, Kobayashi, Kreutzer 14] on quarter-integral disjoint paths. We expect many more algorithmic results to follow from the grid theorem.


翻译:网格理论最初在1986年由Robson和Seymour Prophic Medients V 中由Robertson和Seymour所证明,是图中未成年人研究的最核心结果之一。它在算法图结构理论中发现了许多应用,例如二维理论,它是图中未成年人项目中开发的若干其他结构理论的基础。在90年代中期,Reed和Johnson、Robertson、Seymour和Thomas为图解提供了证据(见[Reed 97、Johnson、Robertson、Seymour、Thomas 01]),独立地,为方向图中图中图中图中图中显示了一个相似的理论,也就是一个相似的理论。在1996年中图中,Remary Robertson、Seyson、Seymmour 01 和Thomas 模型中显示了一个最不长的理论。在1996年中,Remaryal 和Remartal 的成绩最终在Smasal 14 中显示,这个结果在1996年的Smartal 。最后结果在Smaxeal 之后,这个结果在Smart 。在Smartal 中显示,最后在Smartal 14 之后,这个结果在Smartal 。在Smartal ladeal lade 中显示,这个结果在Slade 之后,这个结果在Sta lax 。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员