Social media generate data on human behaviour at large scales and over long periods of time, posing a complementary approach to traditional methods in the social sciences. Millions of texts from social media can be processed with computational methods to study emotions over time and across regions. However, recent research has shown weak correlations between social media emotions and affect questionnaires at the individual level and between static regional aggregates of social media emotion and subjective well-being at the population level, questioning the validity of social media data to study emotions. Yet, to date, no research has tested the validity of social media emotion macroscopes to track the temporal evolution of emotions at the level of a whole society. Here we present a pre-registered prediction study that shows how gender-rescaled time series of Twitter emotional expression at the national level substantially correlate with aggregates of self-reported emotions in a weekly representative survey in the United Kingdom. A follow-up exploratory analysis shows a high prevalence of third-person references in emotionally-charged tweets, indicating that social media data provide a way of social sensing the emotions of others rather than just the emotional experiences of users. These results show that, despite the issues that social media have in terms of representativeness and algorithmic confounding, the combination of advanced text analysis methods with user demographic information in social media emotion macroscopes can provide measures that are informative of the general population beyond social media users.


翻译:然而,最近的研究表明,社交媒体情感和主观福祉在个人层面以及社会媒体情感和人口层面的静态区域汇总中影响问卷的关联性薄弱,质疑社交媒体数据研究情感的正确性。然而,迄今为止,没有任何研究测试社交媒体情感宏观镜的正确性,以跟踪全社会情感的瞬时演变。我们在此提出一个预先登记的预测研究,显示国家一级Twitter情感表达的性别比例调整时间序列如何与联合王国每周一次代表性调查中自我报告的情绪汇总关系密切。后续探索分析显示,在情感驱动的推文中,第三人引用的比例很高,表明社交媒体数据为社会感知他人情感提供了一种途径,而不只是用户的情感体验。这些结果显示,尽管社会媒体用户在社会信息分析中拥有超越一般人口动态分析方法的先进版本,但是,社会媒体用户在人口动态分析中可以提供超越一般人口动态分析方法的先进版本。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员