Classical nonparametric tests to compare multiple samples, such as the Wilcoxon test, are often based on the ranks of observations. We design an interactive rank test called i-Wilcoxon -- an analyst is allowed to adaptively guide the algorithm using observed outcomes, covariates, working models and prior knowledge -- that guarantees type-I error control using martingales. Numerical experiments demonstrate the advantage of (an automated version of) our algorithm under heterogeneous treatment effects. The i-Wilcoxon test is first proposed for two-sample comparison with unpaired data, and then extended to paired data, multi-sample comparison, and sequential settings, thus also extending the Kruskal-Wallis and Friedman tests. As alternatives, we numerically investigate (non-interactive) covariance-adjusted variants of the Wilcoxon test, and provide practical recommendations based on the anticipated population properties of the treatment effects.
翻译:用于比较多种样本的经典非参数测试,如Wilcoxon测试,往往基于观测的层次。我们设计了一个名为i-Wilcoxon的交互式等级测试。我们设计了一个名为i-Wilcoxon的测试,允许分析师利用观察到的结果、共变、工作模型和先前的知识,对算法进行适应性指导,从而保证使用马丁基进行类型I错误控制。数字实验显示了我们算法在多种治疗效果下的优势(一种自动版本)。i-Wilcoxon测试首先为与无孔数据进行双模比较而提出,然后扩大到配对数据、多模类比较和相继设置,从而也扩展了Kruskal-Wallis和Friedman的测试。作为替代方法,我们从数字上调查(非交互性)Wilcoxon测试的共变体调整变体,并根据治疗效应的预期群特性提出切实可行的建议。