Previous studies have demonstrated that end-to-end learning enables significant shaping gains over additive white Gaussian noise (AWGN) channels. However, its benefits have not yet been quantified over realistic wireless channel models. This work aims to fill this gap by exploring the gains of end-to-end learning over a frequency- and time-selective fading channel using orthogonal frequency division multiplexing (OFDM). With imperfect channel knowledge at the receiver, the shaping gains observed on AWGN channels vanish. Nonetheless, we identify two other sources of performance improvements. The first comes from a neural network (NN)-based receiver operating over a large number of subcarriers and OFDM symbols which allows to significantly reduce the number of orthogonal pilots without loss of bit error rate (BER). The second comes from entirely eliminating orthognal pilots by jointly learning a neural receiver together with either superimposed pilots (SIPs), linearly combined with conventional quadrature amplitude modulation (QAM), or an optimized constellation geometry. The learned geometry works for a wide range of signal-to-noise ratios (SNRs), Doppler and delay spreads, has zero mean and does hence not contain any form of superimposed pilots. Both schemes achieve the same BER as the pilot-based baseline with around 7% higher throughput. Thus, we believe that a jointly learned transmitter and receiver are a very interesting component for beyond-5G communication systems which could remove the need and associated control overhead for demodulation reference signals (DMRSs).


翻译:先前的研究已经表明,端到端学习有助于在添加白色高斯噪音(AWGN)的频道上取得显著的成型收益。然而,它的效益还没有在现实的无线频道模型上量化。这项工作的目的是通过探索在频率和时间的随机频率分解多重氧化(OFDM)的频率和时间选择性淡化频道上进行端到端学习的收益来填补这一差距。由于接收器的频道知识不完善,在AWGN频道上观察到的成型收益会消失。然而,我们发现了另外两个改进性能的来源。第一个来源是神经网络基于神经网络的接收器,运行大量子载体和DM的信号信号信号信号信号符号,从而能够大量减少或垂直的实验次数,而不会丢失位误率(BERM)。第二个来源是完全消除或机械化的实验,与超级实验机的实验(SIPs)一起学习神经接收器,线性结合常规的四重度调调控(QAM),或最优化的星座对地测量。一个广泛的信号到信号到的参考比标比值比率(SNRR5)比值比率(SBDRDRDRDRB的模型的模型可以不具有任何相似的模型,因此在10级模型上传播。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员