Purpose: To stabilize the NLPContributionGraph scheme for the surface structuring of contributions information in Natural Language Processing (NLP) scholarly articles via a two-stage annotation methodology: first stage - to define the scheme; and second stage - to stabilize the graphing model. Approach: Re-annotate, a second time, the contributions-pertinent information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline comprising: contribution-centered sentences, phrases, and triples. To this end specifically, care was taken in the second annotation stage to reduce annotation noise while formulating the guidelines for our proposed novel NLP contributions structuring scheme. Findings: The application of NLPContributionGraph on the 50 articles resulted in finally in a dataset of 900 contribution-focused sentences, 4,702 contribution-information-centered phrases, and 2,980 surface-structured triples. The intra-annotation agreement between the first and second stages, in terms of F1, was 67.92% for sentences, 41.82% for phrases, and 22.31% for triples indicating that with an increased granularity of the information, the annotation decision variance is greater. Practical Implications: Demonstrate NLPContributionGraph data integrated in the Open Research Knowledge Graph (ORKG), a next-generation KG-based digital library with compute enabled over structured scholarly knowledge, as a viable aid to assist researchers in their day-to-day tasks. Value: NLPContributionGraph is a novel scheme to obtain research contribution-centered graphs from NLP articles which to the best of our knowledge does not exist in the community. And our quantitative evaluations over the two-stage annotation tasks offer insights into task difficulty.


翻译:目的: 通过两阶段的注解方法,稳定用于自然语言处理(NLP)学术文章捐款信息表面结构的NLPC分配格格仪计划。 具体地说,在第二个注解阶段,通过两个阶段的注解阶段降低注解噪音,同时为我们拟议的新NLP捐款结构计划制定指导方针。 结果:在50篇文章中应用NLPC分配格仪最终导致以捐款为重点的句子、4 702个捐款-信息中心词句和2 980个地表结构三层数据管道数据管道。 第一阶段和第二阶段的注解协议,在F1中,用于减少注解噪音,同时为我们拟议的NLP捐款结构结构构建计划制定指导方针。 结果:在50篇文章中应用NLPC分配格调格仪,最终形成了以捐款为重点的900个数据集,4 702 702个捐款-信息中心-信息-信息中心学术结构三重。 第一阶段和第二阶段的内注解协议,在F1中存在67.92%的句号, N82%的注解调调调调调调调调调调调调, 在KGIL的调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调,,, 的调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调数据的调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
中文自然语言处理数据集:ChineseNLPCorpus
AINLP
33+阅读 · 2019年6月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
中文自然语言处理数据集:ChineseNLPCorpus
AINLP
33+阅读 · 2019年6月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员