In this work, we investigate the impact of channel aging and electromagnetic interference (EMI) on spatially correlated reconfigurable intelligent surface (RIS) assisted cell-free massive multiple-input multiple-output (MIMO) systems. To effectively handle channel aging and EMI, we employ a novel two-phase channel estimation scheme with fractional power control-aided pilot assignment during the uplink channel estimation phase. This scheme provides improved channel estimates compared to existing approaches. The closed-form uplink and downlink spectral efficiency (SE) expressions incorporating fractional power control are derived to enable system performance evaluation. Additionally, we introduce the system's power consumption model to analyze energy efficiency (EE). Our numerical results illustrate the theoretical results and demonstrate the system performance with channel aging and EMI. Specifically, the proposed two-phase channel estimation scheme enhances estimation accuracy, compensating for performance degradation caused by channel aging and EMI. We find that increasing the number of access points (APs), RISs, antennas per AP, and elements per RIS can help to mitigate the SE performance degradation. We also find that an optimal number of APs can be selected to achieve energy efficiency (EE) maximization. However, in severe EMI environments, the benefits of deploying more RISs cannot be fully realized.
翻译:暂无翻译