Hand-annotated data can vary due to factors such as subjective differences, intra-rater variability, and differing annotator expertise. We study annotations from different experts who labelled the same behavior classes on a set of animal behavior videos, and observe a variation in annotation styles. We propose a new method using program synthesis to help interpret annotation differences for behavior analysis. Our model selects relevant trajectory features and learns a temporal filter as part of a program, which corresponds to estimated importance an annotator places on that feature at each timestamp. Our experiments on a dataset from behavioral neuroscience demonstrate that compared to baseline approaches, our method is more accurate at capturing annotator labels and learns interpretable temporal filters. We believe that our method can lead to greater reproducibility of behavior annotations used in scientific studies. We plan to release our code.
翻译:手语附加说明数据可能因主观差异、河内变异性以及不同的说明员专长等因素而不同。 我们研究不同专家的说明,这些专家在一组动物行为录像中标注相同的行为类别,并观察批注风格的差异。 我们提出一种新的方法,利用程序合成来帮助解释行为分析的批注差异。 我们的模型选择相关的轨迹特征,并学习一个时间过滤器作为程序的一部分,这相当于每个时间戳上关于该特征的批注点的估计重要性。 我们对行为神经科学数据集的实验表明,与基线方法相比,我们的方法在捕捉批注标签和学习可解释的时间过滤器方面更为精确。 我们相信,我们的方法可以导致科学研究中使用的行为说明的更大重复性。我们计划发布我们的代码。