The information retrieval (IR) community has a strong tradition of making the computational artifacts and resources available for future reuse, allowing the validation of experimental results. Besides the actual test collections, the underlying run files are often hosted in data archives as part of conferences like TREC, CLEF, or NTCIR. Unfortunately, the run data itself does not provide much information about the underlying experiment. For instance, the single run file is not of much use without the context of the shared task's website or the run data archive. In other domains, like the social sciences, it is good practice to annotate research data with metadata. In this work, we introduce ir_metadata - an extensible metadata schema for TREC run files based on the PRIMAD model. We propose to align the metadata annotations to PRIMAD, which considers components of computational experiments that can affect reproducibility. Furthermore, we outline important components and information that should be reported in the metadata and give evidence from the literature. To demonstrate the usefulness of these metadata annotations, we implement new features in repro_eval that support the outlined metadata schema for the use case of reproducibility studies. Additionally, we curate a dataset with run files derived from experiments with different instantiations of PRIMAD components and annotate these with the corresponding metadata. In the experiments, we cover reproducibility experiments that are identified by the metadata and classified by PRIMAD. With this work, we enable IR researchers to annotate TREC run files and improve the reuse value of experimental artifacts even further.
翻译:信息检索(IR)社区有着为未来再利用提供计算工艺品和资源的强大传统,允许对实验结果进行验证。除了实际的测试收藏外,基础运行文件通常作为TREC、CLEF或NTCIR等会议的一部分,存放在数据档案中。 不幸的是,运行数据本身没有提供有关基础实验的多少信息。例如,没有共享任务网站或运行数据存档,单运行文件就没有多少用处。在其他领域,如社会科学,用元数据来说明研究数据。在这项工作中,我们引入ir_metadata - 一个基于TREC模式运行文件的可扩展元数据模型。我们建议将元数据说明与PRIMAD相协调,后者考虑可影响再现的计算实验组成部分。此外,我们概述了元数据中应该报告的重要内容和信息,并从文献中提供证据。为了证明这些元数据的再利用性,我们用重现的新的功能来支持基于TRE PRE 运行模型的模型模型模型模型模型模型,我们用这些实验的预选的预算数据来进行实验。