Freshness-aware computation offloading has garnered great attention recently in the edge computing arena, with the aim of promptly obtaining up-to-date information and minimizing the transmission of outdated data. However, most of the existing work assumes that wireless channels are reliable and neglect the dynamics and stochasticity thereof. In addition, varying priorities of offloading tasks along with heterogeneous computing units also pose significant challenges in effective task scheduling and resource allocation. To address these challenges, we cast the freshness-aware task offloading problem as a multi-priority optimization problem, considering the unreliability of wireless channels, the heterogeneity of edge servers, and prioritized users. Based on the nonlinear fractional programming and ADMM-Consensus method, we propose a joint resource allocation and task offloading algorithm to solve the original problem iteratively. To improve communication efficiency, we further devise a distributed asynchronous variant for the proposed algorithm. We rigorously analyze the performance and convergence of the proposed algorithms and conduct extensive simulations to corroborate their efficacy and superiority over the existing baselines.


翻译:最近,基于新鲜度感知的计算卸载已经在边缘计算领域引起了极大的关注,其目的是及时获取最新信息,最小化传输过时数据。然而,现有大部分工作假设无线信道是可靠的,并忽略其动态性和随机性。此外,多样化的计算单元和卸载任务的不同优先级也给有效任务调度和资源分配带来了重大挑战。为解决这些问题,我们将新鲜感知任务卸载问题视为多种优先级的优化问题,考虑无线信道的不可靠性、边缘服务器的异构性和升级用户。基于非线性分数规划和ADMM-Consensus方法,我们提出了一个联合资源分配和任务卸载算法来解决原始问题的迭代方法。为提高通信效率,我们进一步设计了一个分布式异步变种的算法。我们严格分析了所提出算法的性能和收敛性,并进行了广泛的仿真,以证明其效力和优越性超过现有的基线。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员