$\newcommand{\Z}{\mathbb{Z}}$ We show improved fine-grained hardness of two key lattice problems in the $\ell_p$ norm: Bounded Distance Decoding to within an $\alpha$ factor of the minimum distance ($\mathrm{BDD}_{p, \alpha}$) and the (decisional) $\gamma$-approximate Shortest Vector Problem ($\mathrm{SVP}_{p,\gamma}$), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show: 1. For all $p \in [1, \infty)$, there is no $2^{o(n)}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha_\mathsf{kn}$, where $\alpha_\mathsf{kn} = 2^{-c_\mathsf{kn}} < 0.98491$ and $c_\mathsf{kn}$ is the $\ell_2$ kissing-number constant, unless non-uniform Gap-ETH is false. 2. For all $p \in [1, \infty)$, there is no $2^{o(n)}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha^\ddagger_p$, where $\alpha^\ddagger_p$ is explicit and satisfies $\alpha^\ddagger_p = 1$ for $1 \leq p \leq 2$, $\alpha^\ddagger_p < 1$ for all $p > 2$, and $\alpha^\ddagger_p \to 1/2$ as $p \to \infty$, unless randomized Gap-ETH is false. 3. For all $p \in [1, \infty) \setminus 2 \Z$, all $C > 1$, and all $\varepsilon > 0$, there is no $2^{(1-\varepsilon)n/C}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha^\dagger_{p, C}$, where $\alpha^\dagger_{p, C}$ is explicit and satisfies $\alpha^\dagger_{p, C} \to 1$ as $C \to \infty$ for any fixed $p \in [1, \infty)$, unless non-uniform Gap-SETH is false. 4. For all $p > p_0 \approx 2.1397$, $p \notin 2\Z$, and all $\varepsilon > 0$, there is no $2^{(1-\varepsilon)n/C_p}$-time algorithm for $\mathrm{SVP}_{p, \gamma}$ for some constant $\gamma = \gamma(p, \varepsilon) > 1$ and explicit constant $C_p > 0$ where $C_p \to 1$ as $p \to \infty$, unless randomized Gap-SETH is false.
翻译:美元 美元 2美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 = 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元