Tie-breaker experimental designs are hybrids of Randomized Controlled Trials (RCTs) and Regression Discontinuity Designs (RDDs) in which subjects with moderate scores are placed in an RCT while subjects with extreme scores are deterministically assigned to the treatment or control group. The tie-breaker design (TBD) has practical advantages over the RCT in settings where it is unfair or uneconomical to deny the treatment to the most deserving recipients. Meanwhile, the TBD has statistical benefits due to randomization over the RDD. In this paper we discuss and quantify the statistical benefits of the TBD compared to the RDD. If the goal is estimation of the average treatment effect or the treatment at more than one score value, the statistical benefits of using a TBD over an RDD are apparent. If the goal is estimation of the average treatment effect at merely one score value, which is typically done by fitting local linear regressions, about 2.8 times more subjects are needed for an RDD in order to achieve the same asymptotic mean squared error. We further demonstrate using both theoretical results and simulations from the Angrist and Lavy (1999) classroom size dataset, that larger experimental radii choices for the TBD lead to greater statistical efficiency.
翻译:断线实验设计是随机控制试验和递减中断设计(RDD)的混合体,其中中分的科目被放置在RCT中,而极端分的科目被确定分配给治疗或控制组。断线试验设计(TBD)在拒绝给予最有资格的受体治疗是不公平或不经济的环境下比RCT具有实际优势。同时,TBD由于在RDD上随机化而具有统计效益。在本文中,我们讨论和量化TBD相对于RDD的统计效益。如果目标是估计平均治疗效果或超过1分的治疗价值,那么在RDD上使用TBD的统计效益是显而易见的。如果目标是仅仅估计一个分值,通常通过适应当地线性回归来估计平均治疗效果,那么对于RDD则需要大约2.8倍以上的科目,以便实现与RDDD相比,与RDD相比,我们讨论和量化TBDD的统计效益与RDD相比的统计效益。如果目标是估计平均治疗效果,那么使用Angrist和Lavy bromas 较大型的实验室的理论结果和模拟,我们进一步展示了Ang-ladigrationaldal latial lad lad latics blasti lax lad labs lax lax lax lax lax lax lax