Tie-breaker experimental designs are hybrids of Randomized Controlled Trials (RCTs) and Regression Discontinuity Designs (RDDs) in which subjects with moderate scores are placed in an RCT while subjects with extreme scores are deterministically assigned to the treatment or control group. The tie-breaker design (TBD) has practical advantages over the RCT in settings where it is unfair or uneconomical to deny the treatment to the most deserving recipients. Meanwhile, the TBD has statistical benefits due to randomization over the RDD. In this paper we discuss and quantify the statistical benefits of the TBD compared to the RDD. If the goal is estimation of the average treatment effect or the treatment at more than one score value, the statistical benefits of using a TBD over an RDD are apparent. If the goal is estimation of the average treatment effect at merely one score value, which is typically done by fitting local linear regressions, about 2.8 times more subjects are needed for an RDD in order to achieve the same asymptotic mean squared error. We further demonstrate using both theoretical results and simulations from the Angrist and Lavy (1999) classroom size dataset, that larger experimental radii choices for the TBD lead to greater statistical efficiency.


翻译:断线实验设计是随机控制试验和递减中断设计(RDD)的混合体,其中中分的科目被放置在RCT中,而极端分的科目被确定分配给治疗或控制组。断线试验设计(TBD)在拒绝给予最有资格的受体治疗是不公平或不经济的环境下比RCT具有实际优势。同时,TBD由于在RDD上随机化而具有统计效益。在本文中,我们讨论和量化TBD相对于RDD的统计效益。如果目标是估计平均治疗效果或超过1分的治疗价值,那么在RDD上使用TBD的统计效益是显而易见的。如果目标是仅仅估计一个分值,通常通过适应当地线性回归来估计平均治疗效果,那么对于RDD则需要大约2.8倍以上的科目,以便实现与RDDD相比,与RDD相比,我们讨论和量化TBDD的统计效益与RDD相比的统计效益。如果目标是估计平均治疗效果,那么使用Angrist和Lavy bromas 较大型的实验室的理论结果和模拟,我们进一步展示了Ang-ladigrationaldal latial lad lad latics blasti lax lad labs lax lax lax lax lax lax lax

0
下载
关闭预览

相关内容

TBD:IEEE Transactions on Big Data。 Explanation:IEEE大数据事务(处理)。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/journals/tbd/
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员