Serverless computing has become a new trending paradigm in cloud computing, allowing developers to focus on the development of core application logic and rapidly construct the prototype via the composition of independent functions. With the development and prosperity of serverless computing, major cloud vendors have successively rolled out their commodity serverless computing platforms. However, the characteristics of these platforms have not been systematically studied. Measuring these characteristics can help developers to select the most adequate serverless computing platform and develop their serverless-based applications in the right way. To fill this knowledge gap, we present a comprehensive study on characterizing mainstream commodity serverless computing platforms, including AWS Lambda, Google Cloud Functions, Azure Functions, and Alibaba Cloud Function Compute. Specifically, we conduct both qualitative analysis and quantitative analysis. In qualitative analysis, we compare these platforms from three aspects (i.e., development, deployment, and runtime) based on their official documentation to construct a taxonomy of characteristics. In quantitative analysis, we analyze the runtime performance of these platforms from multiple dimensions with well-designed benchmarks. First, we analyze three key factors that can influence the startup latency of serverless-based applications. Second, we compare the resource efficiency of different platforms with 16 representative benchmarks. Finally, we measure their performance difference when dealing with different concurrent requests, and explore the potential causes in a black-box fashion. Based on the results of both qualitative and quantitative analysis, we derive a series of findings and provide insightful implications for both developers and cloud vendors.
翻译:无服务器计算已成为云计算中一个新的趋势模式,使开发商能够集中关注核心应用逻辑的发展,并通过独立功能的构成迅速构建原型。随着无服务器计算的发展和繁荣,主要云供应商连续推出其商品无服务器计算平台。然而,这些平台的特征尚未系统地研究。测量这些特征有助于开发商选择最适当的无服务器计算平台,并以正确的方式开发其无服务器应用程序。为了填补这一知识差距,我们提交了一份关于主流商品无服务器计算平台特征化的综合研究,包括AWS Lambda、Google云功能、Azure函数和Alibaba Cloud Dyer Concomte。具体地说,我们进行了质量分析和定量分析。在质量分析中,我们将这些平台从三个方面(即开发、部署和运行时间)进行比较,以其官方文件为基础,建立特征的分类。在定量分析中,我们从多个层面分析这些平台的运行运行时间性绩效绩效绩效,并设计完善了定量基准。首先,我们分析了三个关键因素,这些因素可以影响服务器无透明度应用程序的启动度。最后,我们用不同的业绩分析,我们用不同的业绩分析,从16个平台上的数据分析,我们用不同的分析,并用不同的分析结果分析,我们用不同的分析,用不同的业绩分析,用不同的分析,用不同的分析,用不同的分析,用不同的分析,用不同的分析,用不同的分析,用不同的分析,用不同的计算,用不同的计算,用不同的计算方法分析。