Surprising events trigger measurable brain activity and influence human behavior by affecting learning, memory, and decision-making. Currently there is, however, no consensus on the definition of surprise. Here we identify 18 mathematical definitions of surprise in a unifying framework. We first propose a technical classification of these definitions into three groups based on their dependence on an agent's belief, show how they relate to each other, and prove under what conditions they are indistinguishable. Going beyond this technical analysis, we propose a taxonomy of surprise definitions and classify them into four conceptual categories based on the quantity they measure: (i) 'prediction surprise' measures a mismatch between a prediction and an observation; (ii) 'change-point detection surprise' measures the probability of a change in the environment; (iii) 'confidence-corrected surprise' explicitly accounts for the effect of confidence; and (iv) 'information gain surprise' measures the belief-update upon a new observation. The taxonomy poses the foundation for principled studies of the functional roles and physiological signatures of surprise in the brain.
翻译:令人惊讶的事件触发了可衡量的大脑活动,影响人类行为,影响着学习、记忆和决策。 但是,目前还没有就意外的定义达成共识。 我们在这里在一个统一的框架中确定了18个意外的数学定义。 我们首先建议根据对代理人信仰的依赖,对这些定义进行技术分类,将其分为三个组,显示它们彼此之间的关系,并证明在什么条件下它们是无法区分的。 除了这一技术分析外,我们建议对意外定义进行分类,并根据它们所测量的数量将其分为四个概念类别:(一) 预测和观察之间的错配;(二) 变化点探测突变的概率衡量环境变化的可能性;(三) 信心的纠正惊喜明确说明信任的效果;(四) 信息获得惊喜衡量新观察的信念。分类为对大脑中意外的功能作用和生理特征进行有原则的研究奠定了基础。