Generating dictionary definitions automatically can prove useful for language learners. However, it's still a challenging task of cross-lingual definition generation. In this work, we propose to generate definitions in English for words in various languages. To achieve this, we present a simple yet effective approach based on publicly available pretrained language models. In this approach, models can be directly applied to other languages after trained on the English dataset. We demonstrate the effectiveness of this approach on zero-shot definition generation. Experiments and manual analyses on newly constructed datasets show that our models have a strong cross-lingual transfer ability and can generate fluent English definitions for Chinese words. We further measure the lexical complexity of generated and reference definitions. The results show that the generated definitions are much simpler, which is more suitable for language learners.
翻译:自动生成字典定义可以对语言学习者有用。 但是, 这仍然是跨语言定义生成的艰巨任务。 在这项工作中, 我们提议为各种语言的文字生成英语定义。 为了实现这一点, 我们提出了一个基于公开提供的预先培训的语言模式的简单而有效的方法。 在这个方法中, 在接受过英语数据集培训后, 模型可以直接应用于其他语言。 我们展示了这种零点定义生成方法的有效性。 对新建数据集的实验和人工分析表明, 我们的模型具有很强的跨语言传输能力, 可以生成流利的中文词的英语定义。 我们进一步测量生成的词汇和参考定义的复杂性。 结果显示, 生成的定义比较简单, 更适合语言学习者 。