Image matting is a key technique for image and video editing and composition. Conventionally, deep learning approaches take the whole input image and an associated trimap to infer the alpha matte using convolutional neural networks. Such approaches set state-of-the-arts in image matting; however, they may fail in real-world matting applications due to hardware limitations, since real-world input images for matting are mostly of very high resolution. In this paper, we propose HDMatt, a first deep learning based image matting approach for high-resolution inputs. More concretely, HDMatt runs matting in a patch-based crop-and-stitch manner for high-resolution inputs with a novel module design to address the contextual dependency and consistency issues between different patches. Compared with vanilla patch-based inference which computes each patch independently, we explicitly model the cross-patch contextual dependency with a newly-proposed Cross-Patch Contextual module (CPC) guided by the given trimap. Extensive experiments demonstrate the effectiveness of the proposed method and its necessity for high-resolution inputs. Our HDMatt approach also sets new state-of-the-art performance on Adobe Image Matting and AlphaMatting benchmarks and produce impressive visual results on more real-world high-resolution images.
翻译:图像交配是图像和视频编辑和成像的关键技术。 常规上, 深层次的学习方法采用整个输入图像和相关的三角图法, 使用进化神经网络来推断阿尔法交配。 这种方法在图像交配中设定了最新艺术; 但是, 由于硬件限制, 图像在现实世界的配交应用中可能失败, 因为用于交配的现实世界输入图像大多是高分辨率的。 在本文中, 我们提议HDMAtt, 这是第一个基于深层次学习的高分辨率投入图像交配方法。 更具体地说, HDMAtt 以补足的作物和丝绸方式进行配对高分辨率投入的配对, 并配有新模块设计, 以解决不同补配配方之间的背景依赖性和一致性问题。 和Vanilla 补丁基的配方配对应用由于硬件的限制, 我们明确地用新推出的跨组合背景背景图像模型建模, 以给定的三角组合背景模式为指导。 广泛的实验展示了拟议方法的有效性, 及其对于高分辨率投入的必要性。 我们的GDMAT- Matt 和视觉图像制作了新状态, 高级图像制作了新的图像制作。