We define a complexity class $\mathsf{IB}$ as the class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. We relate $\mathsf{IB}$ to other standard complexity classes, and demonstrate its applicability by finding natural $\mathsf{IB}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.
翻译:我们定义了一个复杂等级 $\ mathsf{IB} 美元为功能问题类别, 用于计算 $f {(n)}(x) 美元 和 $x$, 其中美元是多元时间的双向。 正如我们所证明的那样, 该定义是强有力的, 与在定义中使用的削减类型上的差异, 以及我们是否需要美元来获得一个多元时间的反向或可逆逻辑电路的可比较性相适应。 我们将 $\ mathsf{IB} 美元与其他标准复杂类别联系起来, 并通过在电路复杂度、 蜂窝自动数据、 图式算法和以小线性变换描述的动态系统中找到自然的 $\ mathsf{IB} 问题来证明其适用性 。