A typical power calculation is performed by replacing unknown population-level quantities in the power function with what is observed in external studies. Many authors and practitioners view this as an assumed value of power and offer the Bayesian quantity probability of success or assurance as an alternative. The claim is by averaging over a prior or posterior distribution, probability of success transcends power by capturing the uncertainty around the unknown true treatment effect and any other population-level parameters. We use p-value functions to frame both the probability of success calculation and the typical power calculation as merely producing two different point estimates of power. We demonstrate that Go/No-Go decisions based on either point estimate of power do not adequately quantify and control the risk involved, and instead we argue for Go/No-Go decisions that utilize inference on power for better risk management and decision making.


翻译:典型的权力计算方法是用外部研究中观察到的参数来取代电力功能中未知的人口数量。许多作者和从业者认为这是一种假定的权力价值,提供了巴耶斯数量的成功概率或保证作为替代办法。这种主张是通过在先前或后期分配中平均得出的,成功概率超越权力,通过捕捉未知的真正治疗效应和其他任何人口参数的不确定性而超越权力。我们使用P值功能将成功率计算概率和典型的权力计算设定为仅仅产生两种不同的权力估计点。我们证明,根据对权力的两点估计,Go/No-Go决定不能充分量化和控制所涉风险,相反,我们主张Go/No-Go决定利用对权力的推论进行更好的风险管理和决策。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月11日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员