Palm recognition has emerged as a dominant biometric authentication technology in critical infrastructure. These systems operate in either single-modal form, using palmprint or palmvein individually, or dual-modal form, fusing the two modalities. Despite this diversity, they share similar hardware architectures that inadvertently emit electromagnetic (EM) signals during operation. Our research reveals that these EM emissions leak palm biometric information, motivating us to develop EMPalm--an attack framework that covertly recovers both palmprint and palmvein images from eavesdropped EM signals. Specifically, we first separate the interleaved transmissions of the two modalities, identify and combine their informative frequency bands, and reconstruct the images. To further enhance fidelity, we employ a diffusion model to restore fine-grained biometric features unique to each domain. Evaluations on seven prototype and two commercial palm acquisition devices show that EMPalm can recover palm biometric information with high visual fidelity, achieving SSIM scores up to 0.79, PSNR up to 29.88 dB, and FID scores as low as 6.82 across all tested devices, metrics that collectively demonstrate strong structural similarity, high signal quality, and low perceptual discrepancy. To assess the practical implications of the attack, we further evaluate it against four state-of-the-art palm recognition models, achieving a model-wise average spoofing success rate of 65.30% over 6,000 samples from 100 distinct users.


翻译:掌部识别已成为关键基础设施中主流的生物特征认证技术。这些系统以单模态形式(单独使用掌纹或掌静脉)或双模态形式(融合两种模态)运行。尽管存在多样性,它们共享相似的硬件架构,在运行过程中会无意地发射电磁信号。我们的研究表明,这些电磁发射会泄露掌部生物特征信息,这促使我们开发了EMPalm——一种从窃听的电磁信号中隐蔽恢复掌纹和掌静脉图像的攻击框架。具体而言,我们首先分离两种模态的交错传输,识别并组合其信息频段,进而重建图像。为提升保真度,我们采用扩散模型来恢复每个域特有的细粒度生物特征。在七台原型设备和两台商用掌部采集设备上的评估表明,EMPalm能够以高视觉保真度恢复掌部生物特征信息,在所有测试设备上实现了高达0.79的SSIM分数、高达29.88 dB的PSNR以及低至6.82的FID分数,这些指标共同证明了其具有强结构相似性、高信号质量和低感知差异。为评估该攻击的实际影响,我们进一步在四种最先进的掌部识别模型上进行测试,在来自100位不同用户的6000个样本上实现了平均65.30%的模型级欺骗成功率。

0
下载
关闭预览

相关内容

Palm(官方中文名称奔迈)是一种掌上电脑硬件的品牌名称,采用名为 Palm OS 的操作系统。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员