In this paper, we consider online continuous DR-submodular maximization with linear stochastic long-term constraints. Compared to the prior work on online submodular maximization, our setting introduces the extra complication of stochastic linear constraint functions that are i.i.d. generated at each round. To be precise, at step $t\in\{1,\dots,T\}$, a DR-submodular utility function $f_t(\cdot)$ and a constraint vector $p_t$, i.i.d. generated from an unknown distribution with mean $p$, are revealed after committing to an action $x_t$ and we aim to maximize the overall utility while the expected cumulative resource consumption $\sum_{t=1}^T \langle p,x_t\rangle$ is below a fixed budget $B_T$. Stochastic long-term constraints arise naturally in applications where there is a limited budget or resource available and resource consumption at each step is governed by stochastically time-varying environments. We propose the Online Lagrangian Frank-Wolfe (OLFW) algorithm to solve this class of online problems. We analyze the performance of the OLFW algorithm and we obtain sub-linear regret bounds as well as sub-linear cumulative constraint violation bounds, both in expectation and with high probability.


翻译:在本文中, 我们考虑以线性随机长期限制在网上持续 DR- Submodal 最大化 。 与先前的在线子modal最大化工作相比, 我们的设置引入了每轮产生的i. id. 生成的随机线性约束功能的额外复杂性。 准确地说, 在 $t\ in\\\\\\\\ 1,\ dots, T ⁇ $, 一个 DR- Submodal 通用功能 $f_ t (\ cdot) 和限制矢量 $p_ td 的制约矢量 $p_ t。 与先前的以美元为单位的未知分配相比, 在承诺行动 $_ t$ 之后, 我们的设置了最大效用, 而预期的资源累积消费 $\ sum% t=1\\\ t\ langle p, x_ t\ rangle$ 低于固定预算 $B_ T$。 长期限制自然出现在应用程序中, 当预算或资源可用性限制有限且每步内的资源消耗受时间变化变化中的时间环境的制约时, 我们方- 将OLO- Wal- com- tragal- translate asim asim ex asimst ex ex eximstal eximstal deal eximstal eximst as the sal subligal

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员