Many systems used by society are extremely vulnerable to space weather events such as solar flares and geomagnetic storms which could potentially cause catastrophic damage. In recent years, many works have emerged to provide early warning to such systems by forecasting these events through some proxy, but these approaches have largely focused on a specific phenomenon. We present a sequence-to-sequence learning approach to the problem of forecasting global space weather conditions at an hourly resolution. This approach improves upon other work in this field by simultaneously forecasting several key proxies for geomagnetic activity up to 6 hours in advance. We demonstrate an improvement over the best currently known predictor of geomagnetic storms, and an improvement over a persistence baseline several hours in advance.


翻译:社会使用的许多系统都极易受到空间天气事件的影响,如太阳耀斑和地磁暴等,它们可能造成灾难性的损害。近年来,通过一些代用手段预测这些事件,为向这类系统提供预警,许多工作已经出现,但这些方法主要侧重于一个具体现象。我们提出了一个按小时分辨率预测全球空间天气状况问题的顺序和顺序学习方法。这一方法通过同时预测地磁活动的若干关键代理人,提前6小时进行,改进了这一领域的其他工作。我们展示了对目前已知最佳的地磁暴预报器的改进,并提前数小时预测了持久性基线的改进。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
专访 | Recurrent AI:呼叫系统的「变废为宝」
机器之心
11+阅读 · 2018年11月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
已删除
将门创投
5+阅读 · 2018年3月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
24+阅读 · 2018年10月24日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
专访 | Recurrent AI:呼叫系统的「变废为宝」
机器之心
11+阅读 · 2018年11月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
已删除
将门创投
5+阅读 · 2018年3月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员