Deployed artificial intelligence (AI) often impacts humans, and there is no one-size-fits-all metric to evaluate these tools. Human-centered evaluation of AI-based systems combines quantitative and qualitative analysis and human input. It has been explored to some depth in the explainable AI (XAI) and human-computer interaction (HCI) communities. Gaps remain, but the basic understanding that humans interact with AI and accompanying explanations, and that humans' needs -- complete with their cognitive biases and quirks -- should be held front and center, is accepted by the community. In this paper, we draw parallels between the relatively mature field of XAI and the rapidly evolving research boom around large language models (LLMs). Accepted evaluative metrics for LLMs are not human-centered. We argue that many of the same paths tread by the XAI community over the past decade will be retread when discussing LLMs. Specifically, we argue that humans' tendencies -- again, complete with their cognitive biases and quirks -- should rest front and center when evaluating deployed LLMs. We outline three developed focus areas of human-centered evaluation of XAI: mental models, use case utility, and cognitive engagement, and we highlight the importance of exploring each of these concepts for LLMs. Our goal is to jumpstart human-centered LLM evaluation.
翻译:人工智能(AI)的部署往往影响到人类,而且没有一刀切的衡量标准来评价这些工具。对基于AI的系统进行以人为本的评价,结合了定量和定性分析以及人的投入。在可解释的AI(XAI)和人-计算机互动(HII)社区中,已经对此进行了深入探讨。差距仍然存在,但基本理解是,人类与AI和相应的解释相互作用,人类的需求 -- -- 与其认知偏见和缝隙 -- -- 应该被社区接受,在评估部署的LMS时,应该处于前方和中心。我们在本文件中,在相对成熟的 XAI领域和大型语言模型(LLMS)迅速演变的研究繁荣之间,我们画了平行之处。LLMS的可接受评价指标并非以人为本。我们说,在讨论LMS时,XA社区在过去十年中的许多相同路径将会重新被重新解读。具体地说,人类的倾向 -- -- 与其认知偏见和缝合在一起 -- -- 在评价部署的LMS时,应该处于前方和中心。我们为探索XAI的每一项基础概念、我们开发的人类起点评估,这些基础评估,我们探索性磁体概念的每个基础模型,是探索性模型。</s>