Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentation attack. Traditional presentation attacks use facial images or videos of the victim. Previous work has proven the existence of master faces, i.e., faces that match multiple enrolled templates in face recognition systems, and their existence extends the ability of presentation attacks. In this paper, we perform an extensive study on latent variable evolution (LVE), a method commonly used to generate master faces. We run an LVE algorithm for various scenarios and with more than one database and/or face recognition system to study the properties of the master faces and to understand in which conditions strong master faces could be generated. Moreover, through analysis, we hypothesize that master faces come from some dense areas in the embedding spaces of the face recognition systems. Last but not least, simulated presentation attacks using generated master faces generally preserve the false-matching ability of their original digital forms, thus demonstrating that the existence of master faces poses an actual threat.
翻译:面部认证现在被广泛使用,特别是在移动设备上,而不是使用个人识别号码或解锁模式进行认证,因为这样做方便,因此它已成为使用演示攻击者使用演示攻击的诱人目标。传统演示攻击使用受害人的面部图像或视频。以前的工作证明存在长相,即面部识别系统中的多张注册模板,其存在扩展了演示攻击的能力。在本文中,我们广泛研究了潜伏变量变异(LVE),这是一种常见的生成主脸的方法。我们运行了一种LVE算法,用于各种情景,一个以上的数据库和(或)面部识别系统,以研究主脸的属性,并了解在什么条件下可以产生强势主脸。此外,通过分析,我们假设主脸部面部来自面部识别系统嵌入空间的某些稠密地区。最后但并非最不重要的一点是,使用生成主脸部的模拟演示攻击通常保存其原始数字表格的虚假匹配能力,从而证明主人面部的存在构成实际威胁。