Following work on joint object-action representations, functional object-oriented networks (FOON) were introduced as a knowledge graph representation for robots. A FOON contains symbolic concepts useful to a robot's understanding of tasks and its environment for object-level planning. Prior to this work, little has been done to show how plans acquired from FOON can be executed by a robot, as the concepts in a FOON are too abstract for execution. We thereby introduce the idea of exploiting object-level knowledge as a FOON for task planning and execution. Our approach automatically transforms FOON into PDDL and leverages off-the-shelf planners, action contexts, and robot skills in a hierarchical planning pipeline to generate executable task plans. We demonstrate our entire approach on long-horizon tasks in CoppeliaSim and show how learned action contexts can be extended to never-before-seen scenarios.
翻译:在联合对象-动作表示研究基础上,引入了功能对象导向网络(FOON)作为机器人知识图表示。FOON包含对机器人任务和环境理解有用的符号概念,用于对象级规划。在此项工作之前,很少有人研究如何让机器人执行从FOON获得的计划,因为FOON中的概念对于执行来说过于抽象。因此,我们提出了利用对象级知识作为FOON任务规划和执行的想法。我们的方法自动将FOON转换为PDDL,并利用现有的规划器、动作环境和机器人技能在分层规划管道中生成可执行的任务计划。我们在CoppeliaSim上演示了我们整个方法在长期任务中的应用,并展示了如何将学习的动作环境扩展到前所未见的场景。