In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxel-based representation to parameterize the surrounding geometry of interest points. Instead of using a predefined fixed-size local support in voxelization, which potentially limits the access of richer local geometry information, we propose to learn the support size in a data-driven manner. To this end, we design a differentiable voxelization module that can back-propagate gradients to the support size optimization. To optimize descriptor similarity, the prior 3D CNN work and other supervised methods require abundant correspondence labels or pose annotations of point clouds for crafting metric learning losses. Differently, we show that unsupervised learning of descriptor similarity can be achieved by performing geometric registration in networks. Our learning objectives consider descriptor similarity both across and within point clouds without supervision. Through extensive experiments on point cloud registration benchmarks, we show that our learned descriptors yield superior performance over existing unsupervised methods.
翻译:在这项工作中,我们提出 UPDesc,这是学习强点云注册的点标码的一种不受监督的方法。我们的工作以最近受监督的 3D CNN 标码提取框架为基础,即 3DSmoothNet,它利用一个基于 voxel 的表达方式来参数化周围利益点的几何。我们不使用预先定义的固定规模本地支持法,它有可能限制较富的本地几何信息的获取。我们提议以数据驱动的方式学习支持尺寸。为此,我们设计了一个不同的可氧化化模块,可以将梯度反向支持尺寸优化。为了优化描述相似性,前 3DCNN 的工作和其他受监督的方法需要大量的通信标签或点云说明来绘制计量学习损失。不同的是,我们显示通过在网络中进行几何测量登记可以实现对描述相似性进行非统统统统的学习。我们的学习目标考虑在点云层上和在非监控下都具有相似性。通过对点云层登记基准进行广泛的实验,我们展示了我们所学到的高级的压性压度。