Brain-computer interface (BCI) uses brain signals to communicate with external devices without actual control. Particularly, BCI is one of the interfaces for controlling the robotic arm. In this study, we propose a knowledge distillation-based framework to manipulate robotic arm through hybrid paradigm induced EEG signals for practical use. The teacher model is designed to decode input data hierarchically and transfer knowledge to student model. To this end, soft labels and distillation loss functions are applied to the student model training. According to experimental results, student model achieved the best performance among the singular architecture-based methods. It is confirmed that using hierarchical models and knowledge distillation, the performance of a simple architecture can be improved. Since it is uncertain what knowledge is transferred, it is important to clarify this part in future studies.
翻译:脑计算机界面( BCI) 使用大脑信号与没有实际控制的外部设备进行通信。 特别是, BCI 是控制机器人臂的界面之一。 在这项研究中, 我们提出一个基于知识的蒸馏框架, 通过混合范式引导 EEEG 信号操作机器人臂, 供实际使用。 设计教师模型的目的是将输入数据按等级分解, 并将知识转移给学生模型。 为此, 软标签和蒸馏损失功能应用到学生模型培训中。 根据实验结果, 学生模型在单一建筑方法中取得了最佳的性能。 经证实, 使用等级模型和知识蒸馏, 一个简单结构的性能可以改进。 由于不知道什么是知识转移的, 在未来的研究中必须澄清这部分内容。