A building self-shading shape impacts substantially on the amount of direct sunlight received by the building and contributes significantly to building operational energy use, in addition to other major contributing variables, such as materials and window-to-wall ratios. Deep Learning has the potential to assist designers and engineers by efficiently predicting building energy performance. This paper assesses the applicability of two different neural networks structures, Dense Neural Network (DNN) and Convolutional Neural Network (CNN), for predicting building operational energy use with respect to building shape. The comparison between the two neural networks shows that the DNN model surpasses the CNN model in performance, simplicity, and computation time. However, image-based CNN has the benefit of utilizing architectural graphics that facilitates design communication.


翻译:建筑物的自我阴影形状对建筑物收到的直接阳光量产生很大影响,并且大大有助于建设实用能源使用,此外还有其他主要贡献变量,如材料和窗口对墙比率。深层学习有可能通过高效预测建筑能源性能来帮助设计者和工程师。本文评估了两种不同的神经网络结构,即神经神经网络和进化神经网络(CNN),用于预测建筑在构造方面的实用能源使用。两个神经网络之间的比较表明,DNN模型在性能、简单性和计算时间方面超过了CNN模型。然而,基于图像的CNN利用建筑图解来便利设计通信的好处是。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
109+阅读 · 2021年4月7日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
事件知识图谱构建技术与应用综述
专知会员服务
148+阅读 · 2020年8月6日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
60+阅读 · 2020年3月19日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员