We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary Weil algebra. It allows us to do some analysis with higher infinitesimals numerically and symbolically. To that end, we first give a brief description of the (Forward-mode) automatic differentiation (AD) in terms of $C^\infty$-rings. The notion of a $C^\infty$-ring was introduced by Lawvere and used as the fundamental building block of smooth infinitesimal analysis and synthetic differential geometry. We argue that interpreting AD in terms of $C^\infty$-rings gives us a unifying theoretical framework and modular ways to express multivariate partial derivatives. In particular, we can "package" higher-order Forward-mode AD as a Weil algebra, and take tensor products to compose them to achieve multivariate higher-order AD. The algorithms in the present paper can also be used for a pedagogical purpose in learning and studying smooth infinitesimal analysis as well.
翻译:我们建议一种算法来计算任意Weil代数的 $C $infty$-ring结构。 它允许我们用数字和象征性的数值和符号用更远的微小动物进行一些分析。 为此,我们首先简要描述以$C ⁇ infty$-环计算的(前向-mode)自动区别(AD) 。 由Lawvere 引入了 $C infty$-ring 概念, 并用作光滑无限分析和合成差异几何的基本构件。 我们认为, 用 $C infty 环来解释 AD 给我们提供了一个统一的理论框架和模块化方式来表达多变量部分衍生物。 特别是, 我们可以用“ 包装” 高级前向- mode Ad 作为 Weil 代数, 并使用 推力产品来进行配制, 以达到多变量更高级的 AD。 本文中的算法也可以用于教学目的, 学习和研究平滑无限分析。