We study signaling in Bayesian ad auctions, in which bidders' valuations depend on a random, unknown state of nature. The auction mechanism has complete knowledge of the actual state of nature, and it can send signals to bidders so as to disclose information about the state and increase revenue. For instance, a state may collectively encode some features of the user that are known to the mechanism only, since the latter has access to data sources unaccessible to the bidders. We study the problem of computing how the mechanism should send signals to bidders in order to maximize revenue. While this problem has already been addressed in the easier setting of second-price auctions, to the best of our knowledge, our work is the first to explore ad auctions with more than one slot. In this paper, we focus on public signaling and VCG mechanisms, under which bidders truthfully report their valuations. We start with a negative result, showing that, in general, the problem does not admit a PTAS unless P = NP, even when bidders' valuations are known to the mechanism. The rest of the paper is devoted to settings in which such negative result can be circumvented. First, we prove that, with known valuations, the problem can indeed be solved in polynomial time when either the number of states d or the number of slots m is fixed. Moreover, in the same setting, we provide an FPTAS for the case in which bidders are single minded, but d and m can be arbitrary. Then, we switch to the random valuations setting, in which these are randomly drawn according to some probability distribution. In this case, we show that the problem admits an FPTAS, a PTAS, and a QPTAS, when, respectively, d is fixed, m is fixed, and bidders' valuations are bounded away from zero.


翻译:我们研究的是巴伊西亚广告拍卖中的信号,在这个拍卖中,投标人的估价取决于随机的、未知的自然状态。拍卖机制完全了解自然的实际状况,可以向投标人发出信号,以便披露关于状态的信息并增加收入。例如,一个国家可以集体编码仅为机制所知的用户的一些特征,因为后者可以进入数据源,而投标人无法进入。我们研究的是计算机制如何向投标人发送信号以便最大限度地增加收入的问题。虽然这个问题已经在第二价格拍卖的较容易环境下得到解决,但据我们所知,我们的工作是第一个用不止一个时间段来探索拍卖的信号。在本文中,我们侧重于公开的信号和VCG机制,在这个机制下,投标人只能诚实地报告其估值。我们一开始的负面结果显示,一般来说,问题并不承认PTAS,除非PP=NP,但是当投标人的估价是已知的,但当机制承认投标人的估价时, 其余的文件是专门用来用来进行这种负面结果的设置,在某个时间段里,我们也可以证明一个固定的时间段里,我们知道一个固定的计算。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员