A number of indications, such as the number of Nobel Prize winners, show Japan to be a scientifically advanced country. However, standard bibliometric indicators place Japan as a scientifically developing country. The present study is based on the conjecture that scientific publications from Japan belong to two different populations: one originates from studies that advance science and includes highly cited papers, while the other is formed by poorly cited papers with almost zero probability of being highly cited. Although these two categories of papers cannot be easily identified and separated, the scientific level of Japan can be tested by studying the extreme upper tail of the citation distribution of all scientific articles. In contrast to standard bibliometric indicators, which are calculated from the total number of papers or from sets of papers in which the two categories of papers are mixed, in the extreme upper tail, only papers that are addressed to the advance of science will be present. Based on the extreme upper tail, Japan belongs to the group of scientifically advanced countries and is significantly different from countries with a low scientific level. The number of Clarivate Citation laureates also supports our hypothesis that some citation-based metrics do not reveal the high scientific level of Japan. Our findings suggest that Japan is an extreme case of inaccuracy of some citation metrics; the same drawback might affect other countries, although to a lesser degree.


翻译:一些指标, 如诺贝尔奖获奖人数,表明日本是一个科学先进的国家。 然而,标准的计量指标将日本视为一个科学发展中的国家。 本研究基于这样的假设, 即日本的科学出版物来自两个不同的群体:一个来源于推进科学的研究并包括高被引用的论文,而另一个则由几乎没有可能被高度引用的被引用较少的论文组成。 尽管这两个类别的论文不能轻松地识别和分离,但日本的科学水平可以通过研究所有科学文章的引用分布的极端上尾进行测试。 与从混合了这两类论文的总论文数或论文集中计算的标准计量指标不同,在极端上尾中,只有那些面向推进科学的论文才会出现。 基于极端上尾,日本属于科学先进的国家之列,并且与科学水平低的国家显着不同。 Clarivate Citation(Clarivate引文奖)得主的数量也支持我们的假设,即某些引文基本指标不能揭示日本的高科学水平。 我们的研究结果表明,日本是某些引文指标不准确的极端案例;同样的缺陷可能会影响其他国家,尽管程度较轻。

0
下载
关闭预览

相关内容

日本国位于东亚,是由日本列岛(北海道·本州·四国·九州及其相关岛屿),及南西诸岛,小笠原诸岛等众岛屿组成的岛国。国土面积377,961,73k㎡(62位)。人口总数一亿2688万人(2015年)(10位)。公用语,日本语。国歌,《君が代》,首都,东京都。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年4月30日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年4月30日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员