The relationship of comments to code, and in particular, the task of generating useful comments given the code, has long been of interest. The earliest approaches have been based on strong syntactic theories of comment-structures, and relied on textual templates. More recently, researchers have applied deep learning methods to this task, and specifically, trainable generative translation models which are known to work very well for Natural Language translation (e.g., from German to English). We carefully examine the underlying assumption here: that the task of generating comments sufficiently resembles the task of translating between natural languages, and so similar models and evaluation metrics could be used. We analyze several recent code-comment datasets for this task: CodeNN, DeepCom, FunCom, and DocString. We compare them with WMT19, a standard dataset frequently used to train state of the art natural language translators. We found some interesting differences between the code-comment data and the WMT19 natural language data. Next, we describe and conduct some studies to calibrate BLEU (which is commonly used as a measure of comment quality). using "affinity pairs" of methods, from different projects, in the same project, in the same class, etc; Our study suggests that the current performance on some datasets might need to be improved substantially. We also argue that fairly naive information retrieval (IR) methods do well enough at this task to be considered a reasonable baseline. Finally, we make some suggestions on how our findings might be used in future research in this area.


翻译:相关评论与代码之间的关系,特别是生成该代码的有用评论的任务,长期以来一直令人感兴趣。最早的方法基于强有力的评论结构综合理论,并依靠文本模板。最近,研究人员对这项任务应用了深层次的学习方法,特别是据知对自然语言翻译(例如从德语到英语)非常有用的可训练的基因化翻译模型。我们仔细研究了基本假设:生成评论的任务充分类似于翻译自然语言的任务,因此可以使用类似的模型和评价衡量标准。我们分析了这项工作的最新代码数据集: 代码、 深水、 幽默和 DocString。我们将其与WMT19(一个常见用于培训自然语言翻译的艺术状态的标准数据集)。我们发现代码- 数据与 WMT19 自然语言数据之间存在一些有趣的差异。 接下来,我们描述和进行一些研究以校准 BLEU(通常用来测量评论质量 ) 。我们在“ 亲密关系” 、 DeepCom、 FunCom 和 DocString 上分析最近的一些代码数据集。我们用了一些方法来比较这些方法, 。我们用这些方法来分析这些方法, 如何在将来的精确地评估我们的研究中, 如何改进我们的任务。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员