We develop a novel randomised block coordinate primal-dual algorithm for a class of non-smooth ill-posed convex programs. Lying in the midway between the celebrated Chambolle-Pock primal-dual algorithm and Tseng's accelerated proximal gradient method, we establish global convergence of the last iterate as well optimal $O(1/k)$ and $O(1/k^{2})$ complexity rates in the convex and strongly convex case, respectively, $k$ being the iteration count. Motivated by the increased complexity in the control of distribution level electric power systems, we test the performance of our method on a second-order cone relaxation of an AC-OPF problem. Distributed control is achieved via the distributed locational marginal prices (DLMPs), which are obtained \revise{as} dual variables in our optimisation framework.
翻译:暂无翻译