We introduce an approach for performing quantum state reconstruction on systems of $n$ qubits using a machine-learning-based reconstruction system trained exclusively on $m$ qubits, where $m\geq n$. This approach removes the necessity of exactly matching the dimensionality of a system under consideration with the dimension of a model used for training. We demonstrate our technique by performing quantum state reconstruction on randomly sampled systems of one, two, and three qubits using machine-learning-based methods trained exclusively on systems containing at least one additional qubit. The reconstruction time required for machine-learning-based methods scales significantly more favorably than the training time; hence this technique can offer an overall savings of resources by leveraging a single neural network for dimension-variable state reconstruction, obviating the need to train dedicated machine-learning systems for each Hilbert space.
翻译:我们引入了一种方法,用一个完全以百万美元qubit($m\geq n$)为单位的机器学习重建系统来进行量子系统的量子重建。 这种方法消除了将所考虑的系统的维度与用于培训的模型的维度完全匹配的必要性。 我们用随机抽样的1、2和3个量子系统来进行量子国家重建,我们的方法就是利用专门以至少含有1个额外qub的系统为单位的机械学习方法进行量子重建。 机器学习方法所需的重建时间比培训时间要好得多;因此,这一技术可以通过利用一个单一神经网络进行可尺寸可变国家重建,避免为每个希尔伯特空间培训专门的机器学习系统。