We introduce deep learning models for gravitational wave parameter estimation that combine a modified $\texttt{WaveNet}$ architecture with $\textit{constrastive learning}$ and $\textit{normalizing flow}$. To ascertain the statistical consistency of these models, we validated their predictions against a Gaussian conjugate prior family whose posterior distribution is described by a closed analytical expression. Upon confirming that our models produce statistically consistent results, we used them to estimate the astrophysical parameters of five binary black holes: $\texttt{GW150914}$, $\texttt{GW170104}$, $\texttt{GW170814}$, $\texttt{GW190521}$ and $\texttt{GW190630}$. Our findings indicate that our deep learning approach predicts posterior distributions that encode physical correlations, and that our data-driven median results and $90\%$ confidence intervals are consistent with those obtained with gravitational wave Bayesian analyses. This methodology requires a single V100 $\texttt{NVIDIA}$ GPU to produce median values and posterior distributions within two milliseconds for each event. This neural network, and a tutorial for its use, are available at the $\texttt{Data and Learning Hub for Science}$.
翻译:我们引入了重力浪参数估算的深学习模型,这些模型将修改后的美元(texttt{WaveNet} 美元架构与美元(textit{教育学习}美元)和美元(textit{正常流}美元)相结合。为了确定这些模型的统计一致性,我们对这些模型的统计一致性进行了测试。为了确定这些模型的统计一致性,我们根据一个封闭分析表达式描述其后端分布的Gaussian前家族对其子系的配置进行了测试。在确认我们的模型产生统计上一致的结果后,我们使用这些模型来估计五个双双黑洞的天体物理参数:$(tttttt{GW1500914}美元、$(ttt{GW170104}美元)、美元(ttt{G178104美元)、美元(美元)和美元(texttt{G1780814}美元、美元(gltt{G190521美元)和美元。我们的研究结果表明,我们的深学习方法预测了能够解物理关系,我们数据驱动的中位和90美元信任度间隔与与与以美元(美元)和以美元(美元)和美元、美元)的海脊波波网络分析获得的网络和(美元)和(美元)网络分析的美元)和(美元)网络和(美元)分析,这是每个(美元)和(美元)的,每个(美元)的,每个(美元)/期间的中,需要的中,需要使用两种方法,需要用兩方法。