Considering uncertainty estimation of modern neural networks (NNs) is one of the most important steps towards deploying machine learning systems to meaningful real-world applications such as in medicine, finance or autonomous systems. At the moment, ensembles of different NNs constitute the state-of-the-art in both accuracy and uncertainty estimation in different tasks. However, ensembles of NNs are unpractical under real-world constraints, since their computation and memory consumption scale linearly with the size of the ensemble, which increase their latency and deployment cost. In this work, we examine a simple regularisation approach for distribution-free knowledge distillation of ensemble of machine learning models into a single NN. The aim of the regularisation is to preserve the diversity, accuracy and uncertainty estimation characteristics of the original ensemble without any intricacies, such as fine-tuning. We demonstrate the generality of the approach on combinations of toy data, SVHN/CIFAR-10, simple to complex NN architectures and different tasks.
翻译:考虑到对现代神经网络的不确定性估计,是将机器学习系统用于医学、金融或自主系统等有意义的现实世界应用的最重要步骤之一。目前,不同非军事网络的集合在准确性和不确定性估计的不同任务中都是最先进的,但是,非军事网络的集合在现实世界的限制下是不实际的,因为它们的计算和记忆消耗规模与共同体的大小线性计算和记忆消耗规模相比,增加了它们的延缓度和部署费用。在这项工作中,我们研究了一种简单的常规化方法,即将机器学习模型的共合体用于一个单一的NNN。常规化的目的是保持原共同体的多样性、准确性和不确定性估计特点,而没有任何错综复杂性,例如微调。我们展示了对玩具数据(SVHN/CIFAR-10,简单到复杂的NN结构和不同的任务)的组合方法的一般性。