Preservation of privacy has been a serious concern with the increasing use of IoT-assisted smart systems and their ubiquitous smart sensors. To solve the issue, the smart systems are being trained to depend more on aggregated data instead of directly using raw data. However, most of the existing strategies for privacy-preserving data aggregation, either depend on computation-intensive Homomorphic Encryption based operations or communication-intensive collaborative mechanisms. Unfortunately, none of the approaches are directly suitable for a resource-constrained IoT system. In this work, we leverage the concurrent-transmission-based communication technology to efficiently realize a Multi-Party Computation (MPC) based strategy, the well-known Shamir's Secret Sharing (SSS), and optimize the same to make it suitable for real-world IoT systems.
翻译:保护隐私一直是一个严重关切的问题,因为越来越多的人使用IoT辅助智能系统及其普遍存在的智能传感器。为了解决这个问题,正在对智能系统进行培训,使其更多地依赖综合数据,而不是直接使用原始数据。然而,大多数现有的隐私保护数据汇总战略,要么依靠计算密集的单态加密操作,要么依靠通信密集型合作机制。不幸的是,这些方法没有一个直接适合资源限制的IoT系统。在这项工作中,我们利用同时传输的通信技术,有效地实现基于多党计算(MPC)的战略,即众所周知的Shamir秘密共享(SSS),并优化这一战略,使之适合现实世界的IoT系统。