Vitrimer is a new, exciting class of sustainable polymers with the ability to heal due to their dynamic covalent adaptive network that can go through associative rearrangement reactions. However, a limited choice of constituent molecules restricts their property space, prohibiting full realization of their potential applications. To overcome this challenge, we couple molecular dynamics (MD) simulations and a novel graph variational autoencoder (VAE) machine learning model for inverse design of vitrimer chemistries with desired glass transition temperature (Tg) and synthesize a novel vitrimer polymer. We build the first vitrimer dataset of one million chemistries and calculate Tg on 8,424 of them by high-throughput MD simulations calibrated by a Gaussian process model. The proposed novel VAE employs dual graph encoders and a latent dimension overlapping scheme which allows for individual representation of multi-component vitrimers. By constructing a continuous latent space containing necessary information of vitrimers, we demonstrate high accuracy and efficiency of our framework in discovering novel vitrimers with desirable Tg beyond the training regime. To validate the effectiveness of our framework in experiments, we generate novel vitrimer chemistries with a target Tg = 323 K. By incorporating chemical intuition, we synthesize a vitrimer with Tg of 311-317 K, and experimentally demonstrate healability and flowability. The proposed framework offers an exciting tool for polymer chemists to design and synthesize novel, sustainable vitrimer polymers for a facet of applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IEEE游戏汇刊(T-G)发表关于游戏的科学、技术和工程方面的高质量原创文章。本杂志的文章按照IEEE PSPB操作手册(章节8.2.1.C和8.2.2.A)的要求进行同行评审。每一篇发表的文章都由至少两名独立的审稿人通过单盲的同行评审过程进行评审,审稿人的身份作者并不知道,但审稿人知道作者的身份。文章在被接受前筛选是否抄袭。 官网地址:http://dblp.uni-trier.de/db/journals/tciaig/
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
42+阅读 · 2022年2月17日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员