The natural generalization of the Boolean satisfiability problem to optimization problems is the task of determining the maximum number of clauses that can simultaneously be satisfied in a propositional formula in conjunctive normal form. In the weighted maximum satisfiability problem each clause has a positive weight and one seeks an assignment of maximum weight. The literature almost solely considers the case of positive weights. While the general case of the problem is only restricted slightly by this constraint, many special cases become trivial in the absence of negative weights. In this work we study the problem with negative weights and observe that the problem becomes computationally harder - which we formalize from a parameterized perspective in the sense that various variations of the problem become W[1]-hard if negative weights are present. Allowing negative weights also introduces new variants of the problem: Instead of maximizing the sum of weights of satisfied clauses, we can maximize the absolute value of that sum. This turns out to be surprisingly expressive even restricted to monotone formulas in disjunctive normal form with at most two literals per clause. In contrast to the versions without the absolute value, however, we prove that these variants are fixed-parameter tractable. As technical contribution we present a kernelization for an auxiliary problem on hypergraphs in which we seek, given an edge-weighted hypergraph, an induced subgraph that maximizes the absolute value of the sum of edge-weights.


翻译:Boolean satisfition 问题的自然概括化问题对于优化问题的优化问题来说,是确定以正统形式以配方公式同时满足条款的最大数量的任务。在加权最大相对性问题中,每个条款都有正权重,每个条款都寻求最大权重的分配。文献几乎完全考虑正权重的情况。虽然这个问题的一般情况仅受到这一制约的轻微限制,但在没有负权重的情况下,许多特殊案例变得微不足道。在这项工作中,我们用负权重研究问题,并观察到问题变得更加难以计算----我们从参数化的角度正式确定这一问题的最大数量,也就是说,如果负权重存在,问题的各种变异会变得W[1]-硬。允许负权重也引入了问题的新变体:我们不是最大限度地增加满意权重条款的权重之和,而是尽量扩大该等量的绝对价值。这令人惊讶地表示,甚至局限于以不相容的正常形式出现的单式公式,而每个条款最多有两个直径。与没有绝对值的参数不同,我们从参数角度将问题正式确定为W[1]-如果存在负权重,那么,我们用这些绝对权重的绝对权重的面值,我们证明,在高权重的轨道上会找到一个技术压的硬质变体压,我们在一个我们会寻求一个硬质质质变数的轨道上,我们在的轨道上会寻求一个硬质值。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月11日
Empirical Likelihood Based Bayesian Variable Selection
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员