The presence of plaques in the coronary arteries are a major risk to the patients' life. In particular, non-calcified plaques pose a great challenge, as they are harder to detect and more likely to rupture than calcified plaques. While current deep learning techniques allow precise segmentation of regular images, the performance in medical images is still low, caused mostly by blurriness and ambiguous voxel intensities of unrelated parts that fall on the same range. In this paper, we propose a novel methodology for segmenting calcified and non-calcified plaques in CCTA-CPR scans of coronary arteries. The input slices are masked so only the voxels within the wall vessel are considered for segmentation. We also provide an exhaustive evaluation by applying different types of masks, in order to validate the potential of vessel masking for plaque segmentation. Our methodology results in a prominent boost in segmentation performance, in both quantitative and qualitative evaluation, achieving accurate plaque shapes even for the challenging non-calcified plaques. We believe our findings can lead the future research for high-performance plaque segmentation.
翻译:冠状动脉中存在石块是病人生命的一大危险。 特别是,非计算式的石块是巨大的挑战,因为它们较难探测,比石化的石块更有可能破裂。 虽然目前深层的学习技术允许对常规图像进行精确的分解,但医学图像中的性能仍然很低,这主要是由于混混和混混混的异氧素密度造成的,这些不相干部分属于同一范围。在本文件中,我们提出了一种新型的分解方法,在CCTA-CPR的冠状动脉扫描中,以刻成和未计算成的石块进行分解。 输入切片被遮盖起来,因此只考虑将壁容器内的氧化物进行分解。 我们还通过使用不同种类的口罩进行详尽的评估,以验证容器遮蔽作用的致变分解潜力。 我们的方法是显著地推进分解性工作,在定量和定性评估中,甚至为具有挑战性的非计算式的结晶状部分而取得准确的立形形状。 我们相信,我们的调查结果可以引导未来对高性表现的研究。