Fall detection is a serious healthcare issue that needs to be solved. Falling without quick medical intervention would lower the chances of survival for the elderly, especially if living alone. Hence, the need is there for developing fall detection algorithms with high accuracy. This paper presents a novel IoT-based system for fall detection that includes a sensing device transmitting data to a mobile application through a cloud-connected gateway device. Then, the focus is shifted to the algorithmic aspect where multiple features are extracted from 3-axis accelerometer data taken from existing datasets. The results emphasize on the significance of Continuous Wavelet Transform (CWT) as an influential feature for determining falls. CWT, Signal Energy (SE), Signal Magnitude Area (SMA), and Signal Vector Magnitude (SVM) features have shown promising classification results using K-Nearest Neighbors (KNN) and E-Nearest Neighbors (ENN). For all performance metrics (accuracy, recall, precision, specificity, and F1 Score), the achieved results are higher than 95% for a dataset of small size, while more than 98.47% score is achieved in the aforementioned criteria over the UniMiB-SHAR dataset by the same algorithms, where the classification time for a single test record is extremely efficient and is real-time
翻译:瀑布检测是一个需要解决的严重的卫生保健问题。 没有快速医疗干预的坠落将降低老年人的生存机会, 特别是独居者。 因此, 需要开发出精度很高的跌落检测算法。 本文展示了一个新型的基于 IoT 的坠落检测系统, 其中包括将数据通过云端连接网关设备传输到移动应用程序的感测设备。 然后, 焦点将转移到算法方面, 从现有数据集中提取多个特性的3轴加速计数据。 结果将强调连续波盘变( CWT)作为确定瀑布的有影响力的特征的重要性。 CWT、 信号能源(SE)、 信号磁度区域(SMA) 和信号矢量磁度(SVM) 功能显示一个全新的系统, K- Nearest Neghbors (KNN) 和 E- Nearest Neghbors (ENN) 。 对于所有性能指标( 准确性、 回溯、 精确性、 具体性和 F1分), 所取得的结果超过95%, 小型数据设置的95%, 而Siral- mal- as- sqal- squal- squal recreal 的比一个最高级为98- sqal- squal- sqal- sqal- squal- squal- squal- squal- sqal- sal- sal- sqolational) 。