Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the convergence of the first-order finite volume method based on the exact Riemann solver for the complete compressible Euler equations. Specifically, we derive entropy inequality and prove the consistency of numerical method. Passing to the limit, we show the weak and strong convergence of numerical solutions and identify their limit. The numerical results presented for the spiral, Kelvin-Helmholtz and the Richtmyer-Meshkov problem are consistent with our theoretical analysis.
翻译:最近开发的压缩流消散计量-有价值解决方案概念,是描述在多维尤尔方程式解决方案中可能开发的振动和独特性的适当工具。在本文件中,我们研究了基于完全压缩尤尔方程式的精密里曼求解器的第一级有限量方法的趋同情况。具体地说,我们从微粒不平等中得出,并证明数字方法的一致性。过了这一极限,我们显示了数字解决方案的薄弱和强烈趋同,并确定了其极限。为螺旋、凯尔文-赫尔默尔茨和里希特默尔-梅什科夫问题提供的数字结果与我们的理论分析是一致的。